LE/RN

Lafayette Engagement & Research Network

Brian Miles, Ph.D., CGI September 14, 2018 Air Sensors International Conference Oakland, California

TIT

CGI Experience the commitment®

Discussion Topics

Introduction to the Lafayette Engagement and Research Network (LEaRN)

LEaRN about Air Quality

Kinota[™]: Data Management Backend

Air quality sensor siting

Sensor fabrication and STEM education

Lafayette Engagement & Research Network

Introduction to LEaRN

- Formed in response to U.S. EPA Smart City Air Challenge: Fall 2016
- Two cities awarded \$40,000: Lafayette and Baltimore
- Deploy 250 to 500 air quality sensors in a community
- Community involvement in purchasing and using the sensors
- Identification of partners and project sustainability
- Be transparent: open data and sharing data management plans
- Data is for local purposes and non-regulatory in nature

Pollutant Sources, Transport, Transformation, Deposition, and Effects

Transport / Transformation

Deposition

(particles)

https://www.fws.gov/refuges/airquality/sources.html

Winds

Legend

fires sources (nitrogen oxides) pollutants lakes affected areas [acidification] effects Deposition atmospheric action

> clouds [acid rain, snow, fog]

Gas and Particulate Emissions

volcanoes and other area sources (sulfur dioxide, nitrogen oxides) **fires** (organic carbon)

fertilizer

(ammonia

industry, power plants (sulfur dioxide, nitrogen oxides, mercury)

livestock (ammonia, amines)

> mobile sources (volatile organic carbon, nitrogen oxides)

wide, xides, ry) urban and mobile sources

(volatile organic carbon, nitrogen oxides)

[acidification of surface waters]

forests, vegetation, soils

(ammonia, nitrogen oxides) [ozone and acid damage to soils and forests, leaching of mercury oil and gas production

(nitrogen oxides) fish and birds [mercury and acid exposure, loss of aquatic and other wildlife] Wet Deposition (rain, snow) Deposition (wet and dry)

dimished]

views

alpine lake snow pack [episodic acidification]

Effects

alpine tundra

subalpine forests

visitors [particulates: respiratory effects; toxins (mercury): nervous system, kidney, and brain function effects]

LEaRN Sensor Platform

...

LEaRN Sensor Platform "Things"

	Thing type	Sensors	Amount	
	Small Thing	 Ozone Sainsmart MQ-131 (\$) 	175	
	Large Thing 1	 Ozone Sainsmart MQ-131 (\$) Aeroqual SM50 LZAA (\$\$\$) PM DF Robot SEN 0177 (\$\$) 	50	
	Large Thing 2	 Ozone Sainsmart MQ-131 (\$) Aeroqual SM50 LZAA (\$\$\$) PM Alphasense OPC-N2 (\$\$\$) 	25	
	Total		250	
	* All have a temperature and humidity sensor (DHT1			

LEaRN Sensor Platform

Power Control Board (PCB) design

LEaRN Sensor Platform

Small Enclosure machining drawings

Sensor validation/calibration methodology

- Place all sensors at LDEQ AQ station for 7-14 days
- Compare data during calibration period, building calibration curve
- Apply calibration curve to raw data to produce QA/QC'ed datastreams

Kinota Open data management for real-time collection and analysis of IoT sensor data

- Kinota: Open source implementation of OGC SensorThings API Part 1: Sensing
 - LGPL v3
 - Java 8
- Prioritizes:
 - Standards compliance
 - Modularity
 - Security

Why choose SensorThings?

- Provides a robust, standardized, domain-agnostic data model
- Builds on over a decade of OGC IoT standards
 - Even though SensorThings is new, it is based on experience-tested technology
- Provides a rich query capability making it easier to build analytics tools
 - e.g. Download all observations from temperature sensors within 1km of a location during the month of August 2018 where the temperature was greater than 100 degrees.
- Developer-friendly
 - Uses a simple JSON encoding (no ugly XML)
- Supports both HTTP and MQTT transports
 - HTTP provides REST interface
 - MQTT supports real-time applications

Sensor validation/calibration methodology

- Place all sensors at LDEQ AQ station for 7-14 days
- Compare data during calibration period, building calibration curve
- Apply calibration curve to raw data to produce QA/QC'ed datastreams

Deployment Strategy

E.T

Ľ,

ПLЛ

egional

OIL AND GAS FIELD

T

Legend

LEaRN_ProposedSites_20170825_nontraffic

- Lafayette Public School System
- UniversityOfLafayette

SOUTH BOSCO

OIL AND

GAS FIELD

Duson

+

Ŵ

- Lafayette Parks and Recreation
- Lafayette Consolidated Government Offices
- Hospitals
- LDEQ

LEaRN_ProposedSites_20170807_traffic

Maurice

Leveraging partner sites

- Uniform spatial distribution of sensors
- Include a range of land uses
- Leverage existing fiber network
- Strategically target longer term community IoT grid

Sensor fabrication and STEM education

- LEaRN partner Lafayette Public School System lead sensor fabrication
- Middle and High School students from David Thibodaux STEM Magnet Academy fabricated most of our things
- Past students have participated in robotics competitions, and had an experiment flown on the International Space Station (ISS)
- Building LEaRN sensors will give a new class of students practical experience with electronics theory and skills (e.g. circuit design, soldering, etc.)

DAVID THIBODAUX STEM MAGNET ACADEMY

Sensor fabrication and STEM education

- Led workshop with LPSS teachers
- Goal: integrate data from the • LEaRN sensor network into middleand high-school curriculum
- Teachers were given equipped with lessons to teach students how to use a spreadsheet to download and analyze sensor data

80221 LEaRN API LPSS

List of top 1000 Observ Time series chart for the copied (Value Ph

+
Readme - API Root - Thing-Datastream - Observations_DS_1 - Chart - sortet

Add-ons Help

List of all entity endpoints for the LEaRN SensorThings API List of all Datastreams associated with each Thing available via the

Result) values from the Observations_DS_1 worksheet A link to the source code for the import ISON function that converts

A link to the source code for the ImponuSON function that conver JSON data from the SensorThings API (or any API or JSON data

All changes saved

Discussion / Questions

Name	Contact
Brian Miles, Ph.D. Director Consulting, CGI	Email: brian.miles@cgifederal.com
William LaBar Vice President, CGI	Email: william.labar@cgifederal.com

